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Problem 21. points

Consider the initial-value problem

ẋ = f(x) := x, x(0) = x0 := 1

on the time interval 0 ≤ t ≤ T for �xed T > 0. Calculate an approximate solution x(T )
analytically

(i) by Picard iteration, i.e. determine the n-th Picard iterate x[n](T );

x[k+1](t) = x0 +

∫ t

0

f(x[k](τ))dτ, x[0](t) ≡ x0

(ii) by explicit Euler scheme, i.e. determine the value x[n] after n Euler steps of stepsize
h[n] = T

n
,

x
[n]
k+1 = x

[n]
k + h[n]f

(
x

[n]
k

)
, x

[n]
0 = x0

Compare!

We have
ẋ = x, x(0) = 1

so the solution is
x(t) = et

(i)

x[0](t) ≡ 1

⇒ x[1](t) = 1 +

∫ t

0

x[0](τ)dτ = 1 + t

⇒ . . .

⇒ x[n](T ) = 1 + T +
1

2!
T 2 +

1

3!
T 2 + · · ·+ 1

n!
T n

⇒ lim
n→∞

x[n](T ) =
∞∑

n=0

1

n!
T n =: exp(T ) (Taylor series)
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(ii)

x
[n]
k+1 = x

[n]
k + h[n]x

[n]
k =

(
1 + h[n]

)
x

[n]
k

⇒ x[n]
n =

(
1 + h[n]

)n · 1 =

(
1 +

T

n

)n

⇒ lim
n→∞

x[n]
n = lim

n→∞

(
1 +

T

n

)n

=: exp(T ) (another de�nition of exp)

So both approximate solutions converge to the correct solution.
The Picard iteration converges faster:
For the (k + 1)-th step there is only T n

n!
added to the previous value x[k], which (even for big

T ) becomes small very fast.

x
[n]
n is easier to calculate (only multiplication, no integrals) but converges slower.

Problem 22. points

The initial-value problem

ẋ = f(x) := x2, x(0) = x0 := 1

has a solution for −∞ < t < 1 with �blow-up�, lim
t→1

x(t) = +∞.

Let (xk)k∈N be the series of Picard iterates:

x0(t) ≡ x0

xn+1(t) = x0 +

∫ t

0

f(xn(s))ds

(i) Prove: xk(t) is de�ned for all k ∈ N and t ∈ R.

(ii) Calculate x1(t), x2(t), x3(t) and x4(t) explicitly.

(iii) Determine all t ≥ 0 such that xk(t) converges to the solution x(t) of the initial-value
problem, as k →∞.

(i) Proof: Polynomes are de�ned on all of R

x0 ≡ 1 ∈ polynomes on R

xk+1(t) = 1 +

∫ t

0

(xk(s))
2︸ ︷︷ ︸

polynome

ds

= 1 +

∫ t

0

p(s)ds︸ ︷︷ ︸
integral is polynome again

=: P (t) ∈ polynomes on R

So by induction xk(t) is de�ned ∀t ∈ R.

Prove: xk(t) is de�ned for all k ∈ N and t ∈ R.

2



(ii)

x1(t) = 1 + t

x2(t) = 1 +

∫ t

0

(1 + s)2ds = 1 + t+ t2 +
1

3
t3

x3(t) = 1 +

∫ t

0

(1 + s+ s2 +
1

3
s3)2ds

= 1 + t+ t2 + t3 +
2

3
t4 +

1

3
t5 +

1

9
t6 +

1

63
t7

x4(t) = 1 +

∫ t

0

(t+ t2 + t3 +
2

3
t4 +

1

3
t5 +

1

9
t6 +

1

63
t7)2ds

= 1 +

∫ t

0

(
1 + 2t+ 3t2 + 4t3 +

13

3
t4 + 4t5 +

29

9
t6 +

142

63
t7 +

86

63
t8

44

63
t9 +

55

189
t10 +

2

21
t11 +

13

567
t12 +

2

567
t13 +

1

3969
t14

)
ds

= 1 + t+ t2 + t3 + t4 +
13

15
t5 +

2

3
t6 +

29

63
t7 +

71

252
t8 +

86

567
t9

+
22

315
t10 +

5

189
t11 +

1

126
t12 +

1

567
t13 +

1

3969
t14 +

1

59535
t15

(iii) By the results of (ii) we assume, that xn(t) are in the form

xn(t) = 1 + t+ t2 + t3 + · · ·+ tn + higher terms (1)

We also see (because this is quite a simple ODE) that the exact solution is

x(t) = − 1

t− 1

which can be expressed as a Taylor series for t ∈ [0, 1) which is the time where a solution
to the ODE exists

x(t) =
∞∑
n

tn

This would mean convergence of the approximate solution for n → ∞ everywhere
(∀t ∈ [0, 1)) So we need to proof (1)

Proof: By induction over n we get

x0 = 1 is in the correct form

xn+1 = 1 +

∫ t

0

(xn(s))2ds

We are only interested in terms akt
k with k ≤ n + 1. So if we square the terms of xn,

which supposedly is in the form (1), only the terms with k ≤ n can support to those
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because for k > n⇒
∫
akt

k = ak

k
tk+1 which isn't of any interest.

⇒ xn+1 = 1 +

∫ t

0

(1 + s+ s2 + · · ·+ sn)2ds+ higher terms

= 1 +

∫ t

0

(1 + 2s+ 3s2 + · · ·+ (n+ 1)sn)ds+ higher terms

= 1 + (t+ t+ t2 + · · ·+ tn+1) + higher terms

This is in the correct form, as supposed.
So the iteration converges to the Taylor series of the correct solution, because the 'higher
terms' become small for t < 1.
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